Login / Signup

Olfactory Ensheathing Cell Transplantation after a Complete Spinal Cord Transection Mediates Neuroprotective and Immunomodulatory Mechanisms to Facilitate Regeneration.

Rana R KhankanKhris G GriffisJames R Haggerty-SkeansHui ZhongRoland R RoyV Reggie EdgertonPatricia E Phelps
Published in: The Journal of neuroscience : the official journal of the Society for Neuroscience (2017)
Spinal cord injury creates physical and chemical barriers to axon regeneration. We used a complete spinal cord transection model and olfactory ensheathing cell (OEC) or fibroblast (FB; control) transplantation as a repair strategy. OECs, but not FBs, intermingled with astrocytes, facilitated astroglial scar border formation and sequestered invading peripheral cells. OECs attenuated immune cell infiltration, reduced secondary tissue damage, protected neurons and axons in the lesion core, and helped clear myelin debris. Immunosuppression enhanced survival of OECs and FBs, but only OEC transplantation promoted scaffold formation in the lesion site that facilitated axon regeneration and neuron preservation.
Keyphrases