Partial hydrodynamic representation of quantum molecular dynamics.
Bing GuIgnacio FrancoPublished in: The Journal of chemical physics (2018)
A hybrid method is proposed to propagate system-bath quantum dynamics that use both basis functions and coupled quantum trajectories. In it, the bath is represented with an ensemble of Bohmian trajectories while the system degrees of freedom are accounted through reduced density matrices. By retaining the Hilbert space structure for the system, the method is able to capture interference processes that are challenging to describe in Bohmian dynamics due to singularities that these processes introduce in the quantum potential. By adopting quantum trajectories to represent the bath, the method beats the exponential scaling of the computational cost with the bath size. This combination makes the method suitable for large-scale ground and excited state fully quantum molecular dynamics simulations. Equations of motion for the quantum trajectories and reduced density matrices are derived from the Schrödinger equation and a computational algorithm to solve these equations is proposed. Through computations in two-dimensional model systems, the method is shown to offer an accurate description of subsystem observables and of quantum decoherence, which is difficult to obtain when the quantum nature of the bath is ignored. The scaling of the method is demonstrated using a model with 21 degrees of freedom. The limit of independent trajectories is recovered when the mass of bath degrees of freedom is much larger than the one of the system, in agreement with mixed quantum-classical descriptions.