Login / Signup

Toward Gene-Correlated Spatially Resolved Metabolomics with Fingerprint Coherent Raman Imaging.

Rajas PoornaWei-Wen ChenPeng QiuMarcus T Cicerone
Published in: The journal of physical chemistry. B (2023)
Raman spectroscopy has long been known to provide sufficient information to discriminate distinct cell phenotypes. Underlying this discriminating capability is that Raman spectra provide an overall readout of the metabolic profiles that change with transcriptomic activity. Robustly associating Raman spectral changes with the regulation of specific signaling pathways may be possible, but the spectral signals of interest may be weak and vary somewhat among individuals. Establishing a Raman-to-transcriptome mapping will thus require tightly controlled and easily manipulated biological systems and high-throughput spectral acquisition. We attempt to meet these requirements using broadband coherent anti-Stokes Raman scattering (BCARS) microscopy to spatio-spectrally map the C. elegans hermaphrodite gonad in vivo at subcellular resolution. The C. elegans hermaphrodite gonad is an ideal model system with a sequential, continuous process of highly regulated spatiotemporal cellular events. We demonstrate that the BCARS spatio-spectral signatures correlate with gene expression profiles in the gonad, evincing that BCARS has potential as a spatially resolved omics surrogate.
Keyphrases