DMSO-Triggered Complete Oxygen Transfer Leading to Accelerated Aqueous Hydrolysis of Organohalides under Mild Conditions.
Haicheng LiuJianping LiuXiaokai ChengXiaojuan JiaLei YuQing XuPublished in: ChemSusChem (2018)
Addition of DMSO is found to greatly accelerate the aqueous hydrolysis of organohalides to alcohols, providing a neutral, more efficient, milder and more economic process. Mechanistic studies using 18 O-DMSO and 18 O-H2 O showed that, contrary to the opinion that DMSO works as a dipolar solvent to enhance water's nucleophilicity, the accelerating effect comes from a complete oxygen transfer from DMSO to organohalides through generation of ROS+ Me2 ⋅X- salts through C-O bond formation, followed by O-S bond disassociative hydrolysis of ROS+ Me2 ⋅X- with water. This method is applicable to a wide range of organohalides and thus may have potential for practical industrial application, owing to easy recovery of DMSO from the H2 O/DMSO mixture by regular vacuum rectification.