Login / Signup

Tuning the Adsorption Energy of Methanol Molecules Along Ni-N-Doped Carbon Phase Boundaries by the Mott-Schottky Effect for Gas-Phase Methanol Dehydrogenation.

Zhong-Hua XueJing-Tan HanWei-Jie FengQiu-Ying YuXin-Hao LiMarkus AntoniettiJie-Sheng Chen
Published in: Angewandte Chemie (International ed. in English) (2018)
Engineering the adsorption of molecules on active sites is an integral and challenging part for the design of highly efficient transition-metal-based catalysts for methanol dehydrogenation. A Mott-Schottky catalyst composed of Ni nanoparticles and tailorable nitrogen-doped carbon-foam (Ni/NCF) and thus tunable adsorption energy is presented for highly efficient and selective dehydrogenation of gas-phase methanol to hydrogen and CO even under relatively high weight hourly space velocities (WHSV). Both theoretical and experimental results reveal the key role of the rectifying contact at the Ni/NCF boundaries in tailoring the electron density of Ni species and enhancing the absorption energies of methanol molecules, which leads to a remarkably high turnover frequency (TOF) value (356 mol methanol mol-1  Ni h-1 at 350 °C), outpacing previously reported bench-marked transition-metal catalysts 10-fold.
Keyphrases
  • transition metal
  • highly efficient
  • carbon dioxide
  • metal organic framework
  • mass spectrometry
  • aqueous solution
  • ms ms
  • physical activity
  • dna methylation
  • gold nanoparticles
  • body composition
  • genetic diversity