Login / Signup

Acidic pH-Induced Conformational Changes in Chikungunya Virus Fusion Protein E1: a Spring-Twisted Region in the Domain I-III Linker Acts as a Hinge Point for Swiveling Motion of Domains.

Bibekananda SahooNaresh Kumar GudigamollaTirumala Kumar Chowdary
Published in: Journal of virology (2020)
Chikungunya virus (CHIKV), a mosquito-transmitted alphavirus, enters a cell through endocytosis, followed by viral and cell membrane fusion. The fusion protein, E1, undergoes an acid pH-induced pre- to postfusion conformation change during membrane fusion. As part of the conformation change, E1 dissociates from the receptor-binding protein, E2, and swivels its domains I and II over domain III to form an extended intermediate and then eventually to form a postfusion hairpin homotrimer. In this study, we tested if the domain I-III linker acts as a "hinge" for the swiveling motion of E1 domains. We found a conserved spring-twisted structure in the linker, stabilized by a salt bridge between a conserved arginine-aspartic acid pair, as a "hinge point" for domain swiveling. Molecular dynamics (MD) simulation of the CHIKV E1 or E2-E1 structure predicted that the spring-twisted region untwists at pH 5.5. Corroborating the prediction, introduction of a "cystine staple" at the hinge point, replacing the conserved arginine-aspartic acid pair with cysteine residues, resulted in loss of fusion activity of E1. MD simulation also predicted domain I-III swiveling at acidic pH. We tested if breaking the His 331-Lys 16 H bond between domains I and III, seen only in the prefusion conformation, is important for domain swiveling. When domains I and III are "stapled" by introducing a disulfide bond in between, E1 showed loss of fusion activity, implying that domain I and III dissociation is a critical acid pH-induced step in membrane fusion. However, replacement of His 331 with an acidic residue did not affect the pH threshold for fusion, suggesting His 331 is not an acid-sensing residue.IMPORTANCE Aedes mosquito-transmitted viruses such as the Zika, dengue, and chikungunya viruses have spread globally. CHIKV, similar to many other enveloped viruses, enters cells in sequential steps: step 1 involves receptor binding followed by endocytosis, and step 2 involves viral-cell membrane fusion in the endocytic vesicle. The viral envelope surface protein, E1, performs membrane fusion. E1 is triggered to undergo conformational changes by acidic pH of the maturing endosome. Different domains of E1 rearrange during the pre- to postfusion conformation change. Using in silico analysis of the E1 structure and different biochemical experiments, we explained a structural mechanism of key conformational changes in E1 triggered by acidic pH. We noted two important structural changes in E1 at acidic pH. In the first, a spring-twisted region in a loop connecting two domains (I and III) untwists, bringing a swiveling motion of domains on each other. In the second, breaking of interactions between domains I and III and domain separation are required for membrane fusion. This knowledge will help devise new therapeutic strategies to block conformation changes in E1 and thus viral entry.
Keyphrases