DDX3 Upregulates Hydrogen Peroxide-Induced Melanogenesis in Sk-Mel-2 Human Melanoma Cells.
Sanung EomShinhui LeeJiwon LeeHye Duck YeomSeong-Gene LeeJunho H LeePublished in: Molecules (Basel, Switzerland) (2022)
DDX3 is a DEAD-box RNA helicase with diverse biological functions through multicellular pathways. The objective of this study was to investigate the role of DDX3 in regulating melanogenesis by the exploring signaling pathways involved. Various concentrations of hydrogen peroxide were used to induce melanogenesis in SK-Mel-2 human melanoma cells. Melanin content assays, tyrosinase activity analysis, and Western blot analysis were performed to determine how DDX3 was involved in melanogenesis. Transient transfection was performed to overexpress or silence DDX3 genes. Immunoprecipitation was performed using an antityrosinase antibody. Based on the results of the cell viability test, melanin content, and activity of tyrosinase, a key melanogenesis enzyme, in SK-Mel-2 human melanoma cells, hydrogen peroxide at 0.1 mM was chosen to induce melanogenesis. Treatment with H 2 O 2 notably increased the promoter activity of DDX3. After treatment with hydroperoxide for 4 h, melanin content and tyrosinase activity peaked in DDX3-transfected cells. Overexpression of DDX3 increased melanin content and tyrosinase expression under oxidative stress induced by H 2 O 2 . DDX3 co-immunoprecipitated with tyrosinase, a melanogenesis enzyme. The interaction between DDX3 and tyrosinase was strongly increased under oxidative stress. DDX3 could increase melanogenesis under the H 2 O 2 -treated condition. Thus, targeting DDX3 could be a novel strategy to develop molecular therapy for skin diseases.