Guild-Level Microbiome Signature Associated with COVID-19 Severity and Prognosis.
Mingquan GuoGuojun WuYun TanYan LiXin JinWeiqiang QiXiaokui GuoChenhong ZhangZhaoqin ZhuLiping ZhaoPublished in: mBio (2023)
Coronavirus disease 2019 (COVID-19) severity has been associated with alterations of the gut microbiota. However, the relationship between gut microbiome alterations and COVID-19 prognosis remains elusive. Here, we performed a genome-resolved metagenomic analysis on fecal samples from 300 in-hospital COVID-19 patients, collected at the time of admission. Among the 2,568 high quality metagenome-assembled genomes (HQMAGs), redundancy analysis identified 33 HQMAGs which showed differential distribution among mild, moderate, and severe/critical severity groups. Co-abundance network analysis determined that the 33 HQMAGs were organized as two competing guilds. Guild 1 harbored more genes for short-chain fatty acid biosynthesis, and fewer genes for virulence and antibiotic resistance, compared with Guild 2. Based on average abundance difference between the two guilds, the guild-level microbiome index (GMI) classified patients from different severity groups (average AUROC [area under the receiver operating curve] = 0.83). Moreover, age-adjusted partial Spearman's correlation showed that GMIs at admission were correlated with 8 clinical parameters, which are predictors for COVID-19 prognosis, on day 7 in hospital. In addition, GMI at admission was associated with death/discharge outcome of the critical patients. We further validated that GMI was able to consistently classify patients with different COVID-19 symptom severities in different countries and differentiated COVID-19 patients from healthy subjects and pneumonia controls in four independent data sets. Thus, this genome-based guild-level signature may facilitate early identification of hospitalized COVID-19 patients with high risk of more severe outcomes at time of admission. IMPORTANCE Previous reports on the associations between COVID-19 and gut microbiome have been constrained by taxonomic-level analysis and overlook the interaction between microbes. By applying a genome-resolved, reference-free, guild-based metagenomic analysis, we demonstrated that the relationship between gut microbiota and COVID-19 is genome-specific instead of taxon-specific or even species-specific. Moreover, the COVID-19-associated genomes were not independent but formed two competing guilds, with Guild 1 potentially beneficial and Guild 2 potentially more detrimental to the host based on comparative genomic analysis. The dominance of Guild 2 over Guild 1 at time of admission was associated with hospitalized COVID-19 patients at high risk for more severe outcomes. Moreover, the guild-level microbiome signature is not only correlated with the symptom severity of COVID-19 patients, but also differentiates COVID-19 patients from pneumonia controls and healthy subjects across different studies. Here, we showed the possibility of using genome-resolved and guild-level microbiome signatures to identify hospitalized COVID-19 patients with a high risk of more severe outcomes at the time of admission.
Keyphrases
- coronavirus disease
- sars cov
- respiratory syndrome coronavirus
- emergency department
- genome wide
- end stage renal disease
- chronic kidney disease
- healthcare
- newly diagnosed
- gene expression
- staphylococcus aureus
- escherichia coli
- pseudomonas aeruginosa
- metabolic syndrome
- antibiotic resistance genes
- artificial intelligence
- big data
- patient reported outcomes
- cell wall
- respiratory failure