Login / Signup

Effect of High Strain Rate on Adiabatic Shearing of α+β Dual-Phase Ti Alloy.

Fang HaoYuxuan DuPeixuan LiYouchuan MaoDeye LinJun WangXingyu GaoKaixuan WangXianghong LiuHaifeng SongYong FengJinshan LiWilliam Yi Wang
Published in: Materials (Basel, Switzerland) (2021)
In the present work, the localized features of adiabatic shear bands (ASBs) of our recently designed damage tolerance α+β dual-phase Ti alloy are investigated by the integration of electron backscattering diffraction and experimental and theoretical Schmid factor analysis. At the strain rate of 1.8 × 104 s-1 induced by a split Hopkinson pressure bar, the shear stress reaches a maximum of 1951 MPa with the shear strain of 1.27. It is found that the α+β dual-phase colony structures mediate the extensive plastic deformations along α/β phase boundaries, contributing to the formations of ASBs, microvoids, and cracks, and resulting in stable and unstable softening behaviors. Moreover, the dynamic recrystallization yields the dispersion of a great amount of fine α grains along the shearing paths and in the ASBs, promoting the softening and shear localization. On the contrary, low-angle grain boundaries present good resistance to the formation of cracks and the thermal softening, while the non-basal slipping dramatically contributes to the strain hardening, supporting the promising approaches to fabricate the advanced damage tolerance dual-phase Ti alloy.
Keyphrases
  • oxidative stress
  • high resolution
  • air pollution
  • data analysis