Design, Synthesis, and Biological Evaluation of Tetrahydro-α-carbolines as Akt1 Inhibitors That Inhibit Colorectal Cancer Cell Proliferation.
Guo LiXiang-Hong HeHe-Ping LiQian ZhaoDong-Ai LiHong-Ping ZhuYue-Hua ZhangGu ZhanWei HuangPublished in: ChemMedChem (2022)
A series of densely functionalized THαCs were designed and synthesized as Akt1 inhibitors. Organocatalytic [3+3] annulation between indolin-2-imines 1 and nitroallylic acetates 2 provided rapid access to this pharmacologically interesting framework. In vitro kinase inhibitory abilities and cytotoxicity assays revealed that compound 3 af [(3S*,4S*)-4-(4-bromo-2-fluorophenyl)-9-methyl-3-nitro-1-tosyl-2,3,4,9-tetrahydro-1H-pyrido[2,3-b]indole] was the most potent Akt1 inhibitor, and mechanistic study indicated that compound 3 af suppressed the proliferation of colorectal cancer cells via inducing apoptosis and autophagy. Molecular docking suggested that the indole fragment of 3 af was inserted into the hydrophobic pocket of Akt1 protein, and the H-bond between 3 af and residue Lys179 also contributed to the stable binding. This article provides an efficient strategy to design and synthesize biologically important compounds as novel Akt1 inhibitors.