Login / Signup

The Wolbachia protein TomO interacts with a host RNA to induce polarization defects in Drosophila oocytes.

Manabu OtéDaisuke Yamamoto
Published in: Archives of insect biochemistry and physiology (2018)
Wolbachia is an endosymbiont prevalent in arthropods. To maximize its transmission thorough the female germline, Wolbachia induces in infected hosts male-to-female transformation, male killing, parthenogenesis, and cytoplasmic incompatibility, depending on the host species and Wolbachia strain involved. However, the molecular mechanisms underlying these host manipulations by Wolbachia remain largely unknown. The Wolbachia strain wMel, an inhabitant of Drosophila melanogaster, impairs host oogenesis only when transplanted into a heterologous host, for example, Drosophila simulans. We found that egg polarity defects induced by wMel infection in D. simulans can be recapitulated in the natural host D. melanogaster by transgenic overexpression of a variant of the Wolbachia protein Toxic manipulator of oogenesis (TomO), TomOwMel∆HS , in the female germline. RNA immunoprecipitation assays demonstrated that TomO physically associates with orb mRNA, which, as a result, fails to interact with the translation repressor Cup. This leads to precocious translation of Orb, a posterior determinant, and thereby to the misspecification of oocytes and accompanying polarity defects. We propose that the ability of TomO to bind to orb mRNA might provide a means for Wolbachia to enter the oocyte located at the posterior end of the egg chamber, thereby accomplishing secure maternal transmission thorough the female germline.
Keyphrases
  • aedes aegypti
  • dengue virus
  • zika virus
  • binding protein
  • dna repair
  • drosophila melanogaster
  • high throughput
  • protein protein
  • body mass index
  • pregnant women
  • small molecule