Login / Signup

Effects of Gluteus Medius and Biceps Femoris Stimulation on Reduction of Knee Abduction Moment During a Landing Task.

Dan WangMan WangVikki Wing-Shan ChuPatrick Shu-Hang YungDaniel T P Fong
Published in: Journal of applied biomechanics (2023)
Anterior cruciate ligament injury prevention should focus primarily on reduction of the knee abduction moment (KAM) in landing tasks. Gluteus medius and hamstring forces are considered to decrease KAM during landing. The effects of different muscle stimulations on KAM reduction were compared using 2 electrode sizes (standard 38 cm2 and half size 19 cm2) during a landing task. Twelve young healthy female adults (22.3 [3.6] y, 1.62 [0.02] m, 50.2 [4.7] kg) were recruited. KAM was calculated under 3 conditions of muscle stimulation (gluteus medius, biceps femoris, and both gluteus medius, and biceps femoris) using 2 electrode sizes, respectively versus no stimulation during a landing task. A repeated-measures analysis of variance determined that KAM differed significantly among stimulation conditions and post hoc analysis revealed that KAM was significantly decreased in conditions of stimulating either the gluteus medius (P < .001) or the biceps femoris (P < .001) with the standard electrode size, and condition of stimulating both gluteus medius and biceps femoris with half-size electrode (P = .012) when compared with the control condition. Therefore, stimulation on the gluteus medius, the biceps femoris, or both muscles could be implemented for the examination of anterior cruciate ligament injury potential.
Keyphrases
  • anterior cruciate ligament
  • rotator cuff
  • carbon nanotubes
  • total knee arthroplasty
  • skeletal muscle
  • anterior cruciate ligament reconstruction