Ground and Excited States of Gas-Phase DNA Nucleobase Cation-Radicals. A UV-vis Photodisociation Action Spectroscopy and Computational Study of Adenine and 9-Methyladenine.
Shu R HuangAndy DangFrantišek TurečekPublished in: Journal of the American Society for Mass Spectrometry (2020)
Cation radicals of adenine (A•+) and 9-methyladenine (MA•+) were generated in the gas phase by collision-induced intramolecular electron transfer in copper-terpyridine-nucleobase ternary complexes and characterized by collision-induced dissociation (CID) mass spectra and UV-vis photodissociation action spectroscopy in the 210-700 nm wavelength region. The action spectra of both A•+ and MA•+ displayed characteristic absorption bands in the near-UV and visible regions. Another tautomer of A•+ was generated as a minor product by multistep CID of protonated 9-(2-bromoethyl)adenine. Structure analysis by density functional theory and coupled-clusters ab initio calculations pointed to the canonical 9-H-tautomer Ad1•+ as the global energy minimum of adenine cation radicals. The canonical tautomer MA1•+ was also calculated to be a low-energy structure among methyladenine cation radicals. However, two new noncanonical tautomers were found to be energetically comparable to MA1•+. Vibronic absorption spectra were calculated for several tautomers of A•+ and MA•+ and benchmarked on equation-of-motion coupled-clusters excited-state calculations. Analysis of the vibronic absorption spectra of A•+ tautomers pointed to the canonical tautomer Ad1•+ as providing the best match with the action spectrum. Likewise, the canonical tautomer MA1•+ was the unequivocal best match for the MA•+ ion generated in the gas phase. According to potential-energy mapping, MA1•+ was separated from energetically favorable noncanonical cation radicals by a high-energy barrier that was calculated to be above the dissociation threshold for loss of a methyl hydrogen atom, thus preventing isomerization. Structures and energetics of all four DNA nucleobase cation radicals are compared and discussed.