The role of vitamin D in breast cancer risk and progression.
Justine VanhevelLieve VerlindenStefanie DomsHans P M W WildiersAnnemieke VerstuyfPublished in: Endocrine-related cancer (2022)
The active form of vitamin D3, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), is primarily known as a key regulator of calcium and phosphate homeostasis. It exerts its biological functions by binding to the vitamin D receptor (VDR), a transcription factor that regulates gene expression in vitamin D-target tissues such as intestine, kidney and bone. Yet, the VDR is expressed in many additional normal and cancerous tissues, where it moderates the antiproliferative, prodifferentiating and immune-modulating effects of 1,25(OH)2D3. Interestingly, several epidemiological studies show that low levels of 25(OH)D, a biological marker for 1,25(OH)2D3 status, are associated with an increased risk of breast cancer (BC) development. Mendelian randomization studies, however, did not find any relationship between single-nucleotide polymorphisms in genes associated with lower serum 25(OH)D and BC risk. Nevertheless, multiple and in vivo preclinical studies illustrate that 1,25(OH)2D3 or its less calcaemic structural analogues influence diverse cellular processes in BC such as proliferation, differentiation, apoptosis, autophagy and the epithelial-mesenchymal transition. Recent insights also demonstrate that 1,25(OH)2D3 treatment impacts on cell metabolism and on the cancer stem cell population. The presence of VDR in the majority of BCs, together with the various anti-tumoural effects of 1,25(OH)2D3, has supported the evaluation of the effects of vitamin D3 supplementation on BC development. However, most randomized controlled clinical trials do not demonstrate a clear decrease in BC incidence with vitamin D3 supplementation. However, 1,25(OH)2D3 or its analogues seem biologically more active and may have more potential anticancer activity in BC upon combination with existing cancer therapies.
Keyphrases
- gene expression
- transcription factor
- signaling pathway
- epithelial mesenchymal transition
- breast cancer risk
- clinical trial
- cell death
- endoplasmic reticulum stress
- case control
- oxidative stress
- cancer stem cells
- single cell
- double blind
- papillary thyroid
- cell proliferation
- climate change
- dna binding
- bone marrow
- combination therapy
- bone loss