Enzymatic Monoglucosylation of Rubusoside and the Structure-Sweetness/Taste Relationship of Monoglucosyl Derivatives.
Ling ZhaoYao WangZhenlin LiXiaonan WangYijun ChenXuri WuPublished in: Journal of agricultural and food chemistry (2020)
Monoglucosylation of rubusoside not only could increase its structural diversity but may also improve its taste. To biosynthesize the monoglucosyl rubusosides, a series of glycosyltransferases and glycosynthases were screened to identify the enzymes capable of specifically glycosylating the hydroxyl groups of the 13-O-β-d-glucosyl and 19-COO-β-d-glucosyl moieties. After structural characterization, the effect of structure on sweetness and taste was established based on these rubusoside-derived analogues, including two first characterized compounds. β-Monoglucosylation of two 2-hydroxyl groups, as well as α-monoglucosylations of the 4- and 6-hydroxyl groups of the 13-glucosyl moiety, could significantly increase the relative sweetness of rubusoside to 140 while maintaining or improving the taste quality. In contrast, monoglucosylations of other hydroxyl groups in our study usually decreased the taste quality of the rubusoside. Additionally, the possibility of a negative influence of these monoglucosylated derivatives on the function of islets was preliminarily excluded, which should facilitate the development of rubusoside-derived sweeteners.