Login / Signup

DNA fragmentation in a steady shear flow.

Yiming QiaoZixue MaClive OnyangoXiang ChengKevin D Dorfman
Published in: Biomicrofluidics (2022)
We have determined the susceptibility of T4 DNA (166 kilobase pairs, kbp) to fragmentation under steady shear in a cone-and-plate rheometer. After shearing for at least 30 min at a shear rate of 6000 s - 1 , corresponding to a Reynolds number of O ( 10 3 ) and a Weissenberg number of O ( 10 3 ) , 97.9 ± 1.3 % of the sample is broken into a polydisperse mixture with a number-averaged molecular weight of 62.6 ± 3.2  kbp and a polydispersity index of 1.29 ± 0.03 , as measured by pulsed-field gel electrophoresis (with a 95% confidence interval). The molecular weight distributions observed here from a shear flow are similar to those produced by a (dominantly extensional) sink flow of DNA and are qualitatively different than the midpoint scission observed in simple extensional flow. Given the inability of shear flow to produce a sharp coil-stretch transition, the data presented here support a model where polymers can be fragmented in flow without complete extension. These results further indicate that DNA fragmentation by shear is unlikely to be a significant issue in microfluidic devices, and anomalous molecular weight observations in experiments are due to DNA processing prior to observation in the device.
Keyphrases
  • circulating tumor
  • cell free
  • single molecule
  • nucleic acid
  • circulating tumor cells
  • machine learning
  • high throughput
  • hyaluronic acid
  • artificial intelligence