Epistemic uncertainty in Bayesian predictive probabilities.
Charles C LiuRon Xiaolong YuPublished in: Journal of biopharmaceutical statistics (2023)
Bayesian predictive probabilities have become a ubiquitous tool for design and monitoring of clinical trials. The typical procedure is to average predictive probabilities over the prior or posterior distributions. In this paper, we highlight the limitations of relying solely on averaging, and propose the reporting of intervals or quantiles for the predictive probabilities. These intervals formalize the intuition that uncertainty decreases with more information. We present four different applications (Phase 1 dose escalation, early stopping for futility, sample size re-estimation, and assurance/probability of success) to demonstrate the practicality and generality of the proposed approach.