Carbon Dioxide Microbubble Bursting Ionization Mass Spectrometry.
Yuanji GaoQuan HeCheng GuoWeiwei ChenYuanjiang PanPublished in: Analytical chemistry (2022)
Aerosols generated by bubble bursting have been proved to promote the extraction of analytes and have ultrahigh electric fields at their water-air interfaces. This study presented a simple and efficient ionization method, carbon dioxide microbubble bursting ionization (CDMBI), without the presence of an exogenous electric field (namely, zero voltage), by simulating the interfacial chemistries of sea spray aerosols. In CDMBI, microbubbles are generated in situ by continuous input of carbon dioxide into an aqueous solution containing low-concentration analytes. The microbubbles extract low- and high-polarity analytes as they pass through the aqueous solution. Upon reaching the water-air interface, these microbubbles burst to produce charged aerosol microdroplets with an average diameter of 260 μm (8.1-10.4 nL in volume), which are immediately transferred to a mass spectrometer for the detection and identification of extracted analytes. The above analytical process occurs every 4.2 s with a stable total ion chromatogram (relative standard deviation: 9.4%) recorded. CDMBI mass spectrometry (CDMBI-MS) can detect surface-active organic compounds in aerosol microdroplets, such as perfluorooctanoic acid, free fatty acids epoxidized by bubble bursting, sterols, and lecithins in soybean and egg, with the limit of detection reaching the level of fg/mL. In addition, coupling CDMBI-MS with an exogenous voltage yields relatively weak gains in ionization efficiency and sensitivity of analysis. The results suggested that CDMBI can simultaneously accomplish both bubbling extraction and microbubble bursting ionization. The mechanism of CDMBI involves bubbling extraction, proton transfer, inlet ionization, and electrospray-like ionization. Overall, CDMBI-MS can work in both positive and negative ion modes without necessarily needing an exogenous high electric field for ionization and quickly detect trace surface-active analytes in aqueous solutions.
Keyphrases
- mass spectrometry
- gas chromatography
- carbon dioxide
- liquid chromatography
- aqueous solution
- high performance liquid chromatography
- high resolution
- tandem mass spectrometry
- multiple sclerosis
- capillary electrophoresis
- ms ms
- water soluble
- oxidative stress
- high frequency
- ionic liquid
- room temperature
- molecular dynamics simulations
- label free
- heavy metals