Bone Histomorphometry and 18F-Sodium Fluoride Positron Emission Tomography Imaging: Comparison Between only Bone Turnover-based and Unified TMV-based Classification of Renal Osteodystrophy.
Louise AaltonenNiina KoivuviitaMarko SeppänenInari S BurtonHeikki KrögerEliisa LöyttyniemiKaj MetsärinnePublished in: Calcified tissue international (2021)
Bone biopsy is the gold standard for characterization of renal osteodystrophy (ROD). However, the classification of the subtypes of ROD based on histomorphometric parameters is not unambiguous and the range of normal values for turnover differ in different publications. 18F-Sodium Fluoride positron emission tomography (18F-NaF PET) is a dynamic imaging technique that measures turnover. 18F-NaF PET has previously been shown to correlate with histomorphometric parameters. In this cross-sectional study, 26 patients on dialysis underwent a 18F-NaF PET and a bone biopsy. Bone turnover-based classification was assessed using Malluche's historical reference values for normal bone turnover. In unified turnover-mineralization-volume (TMV)-based classification, the whole histopathological picture was evaluated and the range for normal turnover was set accordingly. Fluoride activity was measured in the lumbar spine (L1-L4) and at the anterior iliac crest. On the basis of turnover-based classification of ROD, 12% had high turnover and 61% had low turnover bone disease. On the basis of unified TMV-based classification of ROD, 42% had high turnover/hyperparathyroid bone disease and 23% had low turnover/adynamic bone disease. When using unified TMV-based classification of ROD, 18F-NaF PET had an AUC of 0.86 to discriminate hyperparathyroid bone disease from other types of ROD and an AUC of 0.87, for discriminating adynamic bone disease. There was a disproportion between turnover-based classification and unified TMV-based classification. More research is needed to establish normal range of bone turnover in patients with CKD and to establish the role of PET imaging in ROD.
Keyphrases
- bone mineral density
- postmenopausal women
- positron emission tomography
- body composition
- pet ct
- pet imaging
- machine learning
- computed tomography
- deep learning
- soft tissue
- chronic kidney disease
- bone loss
- end stage renal disease
- bone regeneration
- newly diagnosed
- high resolution
- ejection fraction
- ultrasound guided
- fine needle aspiration
- prognostic factors