Peptide receptors and immune-related proteins expressed in the digestive system of a urochordate, Ciona intestinalis.
Honoo SatakeShin MatsubaraAkira ShiraishiTatsuya YamamotoTomohiro OsugiTsubasa SakaiTsuyoshi KawadaPublished in: Cell and tissue research (2019)
The digestive system is responsible for nutrient intake and defense against pathogenic microbes. Thus, identification of regulatory factors for digestive functions and immune systems is a key step to the verification of the life cycle, homeostasis, survival strategy and evolutionary aspects of an organism. Over the past decade, there have been increasing reports on neuropeptides, their receptors, variable region-containing chitin-binding proteins (VCBPs) and Toll-like receptors (TLRs) in the ascidian, Ciona intestinalis. Mass spectrometry-based peptidomes and genome database-searching detected not only Ciona orthologs or prototypes of vertebrate peptides and their receptors, including cholecystokinin, gonadotropin-releasing hormones, tachykinin, calcitonin and vasopressin but also Ciona-specific neuropeptides including Ci-LFs and Ci-YFVs. The species-specific regulation of GnRHergic signaling including unique signaling control via heterodimerization among multiple GnRH receptors has also been revealed. These findings shed light on the remarkable significance of ascidians in investigations of the evolution and diversification of the peptidergic systems in chordates. In the defensive systems of C. intestinalis, VCBPs and TLRs have been shown to play major roles in the recognition of exogenous microbes in the innate immune system. These findings indicate both common and species-specific functions of the innate immunity-related molecules between C. intestinalis and vertebrates. In this review article, we present recent advances in molecular and functional features and evolutionary aspects of major neuropeptides, their receptors, VCBPs and TLRs in C. intestinalis.