The role of attractive and repellent scene memories in ant homing (Myrmecia croslandi).
Trevor MurrayZoltán KócsiHansjürgen DahmenAjay NarendraFlorent Le MöelAntoine WystrachJochen ZeilPublished in: The Journal of experimental biology (2020)
Solitary foraging ants rely on vision when travelling along routes and when pinpointing their nest. We tethered foragers of Myrmecia croslandi on a trackball and recorded their intended movements when the trackball was located on their normal foraging corridor (on-route), above their nest and at a location several metres away where they have never been before (off-route). We found that at on- and off-route locations, most ants walk in the nest or foraging direction and continue to do so for tens of metres in a straight line. In contrast, above the nest, ants walk in random directions and change walking direction frequently. In addition, the walking direction of ants above the nest oscillates on a fine scale, reflecting search movements that are absent from the paths of ants at the other locations. An agent-based simulation shows that the behaviour of ants at all three locations can be explained by the integration of attractive and repellent views directed towards or away from the nest, respectively. Ants are likely to acquire such views via systematic scanning movements during their learning walks. The model predicts that ants placed in a completely unfamiliar environment should behave as if at the nest, which our subsequent experiments confirmed. We conclude first, that the ants' behaviour at release sites is exclusively driven by what they currently see and not by information on expected outcomes of their behaviour; and second, that navigating ants might continuously integrate attractive and repellent visual memories. We discuss the benefits of such a procedure.