Metamaterial-enhanced near-field readout platform for passive microsensor tags.
Ke WuGuangwu DuanXiaoguang ZhaoChunxu ChenStephan William AndersonXin ZhangPublished in: Microsystems & nanoengineering (2022)
Radiofrequency identification (RFID), particularly passive RFID, is extensively employed in industrial applications to track and trace products, assets, and material flows. The ongoing trend toward increasingly miniaturized RFID sensor tags is likely to continue as technology advances, although miniaturization presents a challenge with regard to the communication coverage area. Recently, efforts in applying metamaterials in RFID technology to increase power transfer efficiency through their unique capacity for electromagnetic wave manipulation have been reported. In particular, metamaterials are being increasingly applied in far-field RFID system applications. Here, we report the development of a magnetic metamaterial and local field enhancement package enabling a marked boost in near-field magnetic strength, ultimately yielding a dramatic increase in the power transfer efficiency between reader and tag antennas. The application of the proposed magnetic metamaterial and local field enhancement package to near-field RFID technology, by offering high power transfer efficiency and a larger communication coverage area, yields new opportunities in the rapidly emerging Internet of Things (IoT) era.