Prediction-error neurons in circuits with multiple neuron types: Formation, refinement, and functional implications.
Loreen HertägClaudia ClopathPublished in: Proceedings of the National Academy of Sciences of the United States of America (2022)
SignificanceAn influential idea in neuroscience is that neural circuits do not only passively process sensory information but rather actively compare them with predictions thereof. A core element of this comparison is prediction-error neurons, the activity of which only changes upon mismatches between actual and predicted sensory stimuli. While it has been shown that these prediction-error neurons come in different variants, it is largely unresolved how they are simultaneously formed and shaped by highly interconnected neural networks. By using a computational model, we study the circuit-level mechanisms that give rise to different variants of prediction-error neurons. Our results shed light on the formation, refinement, and robustness of prediction-error circuits, an important step toward a better understanding of predictive processing.
Keyphrases