Login / Signup

Characterization of Tibetan Soil As a Source or Sink of Atmospheric Persistent Organic Pollutants: Seasonal Shift and Impact of Global Warming.

Jiao RenXiaoping WangPing GongChuanfei Wang
Published in: Environmental science & technology (2019)
Background soils are reservoirs of persistent organic pollutants (POPs). After decades of reduced primary emissions, it is now possible that the POPs contained in these reservoirs are being remobilized because of climate warming. However, a comprehensive investigation into the remobilization of POPs from background soil on the largest and highest plateau on Earth, the Tibetan Plateau (TP), is lacking. In this study, a sampling campaign was carried out on the TP at three background sites with different land cover types (forest, meadow and desert). Field measurements of the air-soil exchange of POPs showed that previous prediction using empirical models overestimated the values of the soil-air partitioning coefficient ( KSA), especially for chemicals with KOA > 9. The direction of exchange for γ-HCH, HCB, and PCB-28 overlapped with the air-soil equilibrium range, but with a tendency for volatilization. Their emission fluxes were 720, 2935, and 538 pg m-2 day-1, respectively, and were similar in extent to those observed for background Arctic soil in Norway. Nam Co and Ngari are also permafrost regions, and most chemicals at these two sites exhibited volatilization. This is the first result showing that permafrost can also emit POPs. Seasonally, we found that chemicals tended to be re-emitted from soils to the atmosphere in winter and deposited from the air to the soil in summer. This finding is opposite to most previous results, possibly because of the higher air-soil concentration gradient caused by the prevailing transport of POPs in summer. Climate warming exerts a strong influence on air-soil exchange, with an increase of 1 °C in ambient temperature likely leading to an increase of Tibetan atmospheric inventories of POPs by 60-400%.
Keyphrases
  • climate change
  • plant growth
  • air pollution
  • magnetic resonance imaging
  • risk assessment
  • heat stress
  • molecular dynamics
  • diffusion weighted imaging