Login / Signup

The Complete Phase Diagram of Monolayers of Enantiomeric N -Stearoyl-threonine Mixtures with Preferred Heterochiral Interactions.

Tetiana MukhinaLars RichterDieter VollhardtGerald BrezesinskiEmanuel Schneck
Published in: Langmuir : the ACS journal of surfaces and colloids (2022)
Langmuir monolayers of chiral amphiphiles are well-controlled model systems for the investigation of phenomena related to stereochemistry. Here, we have investigated mixed monolayers of one pair of enantiomers (l and d) of the amino-acid-based amphiphile N -stearoyl-threonine. The monolayer characteristics were studied by pressure-area isotherm measurements and grazing incidence X-ray diffraction (GIXD) over a wide range of mixing ratios defined by the d-enantiomer mole fraction x D . While the isotherms provide insights into thermodynamical aspects, such as transition pressure, compression/decompression hysteresis, and preferential homo- and heterochiral interactions, GIXD reveals the molecular structural arrangements on the Ångström scale. Dominant heterochiral interactions in the racemic mixture lead to compound formation and the appearance of a nonchiral rectangular lattice, although the pure enantiomers form a chiral oblique lattice. Miscibility was found to be limited to mixtures with 0.27 ≲ x D ≲ 0.73, as well as to both outer edges ( x D ≲ 0.08 and x D ≳ 0.92). Beyond this range, coexistence of oblique and rectangular lattices occurs, as is clearly seen in the GIXD patterns. Based on the results, a complete phase diagram with two eutectic points at x D ≈ 0.25 and x D ≈ 0.75 is proposed. Moreover, N -stearoyl-threonine was found to have a strong tendency to form a hydrogen-bonding network between the headgroups, which promotes superlattice formation.
Keyphrases
  • capillary electrophoresis
  • ionic liquid
  • protein kinase
  • amino acid
  • mass spectrometry
  • high resolution
  • risk factors
  • magnetic resonance imaging
  • electron microscopy
  • single molecule