Login / Signup

Investigation of the Fracture Behaviour of Al-CFRP Cross-Lap Joint Fabricated by Coaxial One-Side Resistance Spot Welding.

Sendong RenHao ChenNinshu MaJingjia ChenShuhei SaekiYoshiaki IwamotoJianguo Yang
Published in: Polymers (2024)
In the present research, coaxial one-side resistance spot welding was performed to join Al5052 and CFRP sheets with different welding currents. The mechanical performance of the cross-lap joint was clarified experimentally. The cross-section of the welded joint and the fracture surfaces was subjected to multi-scale characterization. The fracture behaviours and mechanisms of cross-lap joints are discussed in detail. The results showed that the thermal degradation of CFRP was detected on the cross-section under a 6000 A welding current and the O element was enriched in the decomposed area. The joining zone could be divided into four subregions according to their morphology, which were defined, from outside to inside, as the squeezed zone, the adhesion zone, the cohesion zone and the decomposed zone. After welding, the O-C=O bond disappeared on the CFRP surface while the O=C-N bond was detected on the Al5052 surface. The cross-lap joints demonstrated brittle and ductile fracture behaviours in a cross-tension test, which included two sub-modes: brittle-transition mode and ductile-degradation mode. The transformation of failure modes had a relationship with the heat input and corresponding joining zone composition. The maximum cross-tension load was about 1279 ± 40 N with a welding current of 5600 A.
Keyphrases
  • escherichia coli
  • hip fracture
  • dna damage
  • biofilm formation