Photonic-plasmonic resonator for SERS biodetection.
Zheng TianZhonghai ZhangPublished in: The Analyst (2024)
To improve the laser utilization efficiency and avoid photodamage in surface-enhanced Raman spectroscopy (SERS), it is imperative to introduce photon technology into the field of SERS detection. A major challenge is the inefficient interaction between the substrate and the incident wavelength, resulting in limited Raman enhancement at a relatively low level. Here, we sputtered plasmonic Au nanoparticles (NPs) onto photonic TiO x nanocavities, creating a novel hybrid photonic-plasmonic resonator that achieves a large degree of optical manipulation and long-term localization. By facilely controlling the size of Au NPs, the resonance wavelength of plasmonic Au NPs can be matched with the photonic nanocavity to maximize the light trapping intensity, which leads to a synergistic enhancement of SERS via the electromagnetic and chemical mechanisms, resulting in a SERS enhancement up to 1.75 × 10 9 under non-resonant excitation. In particular, the substrate can achieve strong absorption and localization for long wavelengths, thus enabling a large SERS enhancement with a small light intensity, which can effectively avoid the photodamage that may occur in Raman testing. The substrate can detect various biomolecules, including biomarkers in serum, thus realizing the differentiation of different cancers. This study provides a powerful and sensitive platform for SERS, facilitating bioanalysis and disease diagnosis in complex systems.