Prediction Models for Agonists and Antagonists of Molecular Initiation Events for Toxicity Pathways Using an Improved Deep-Learning-Based Quantitative Structure-Activity Relationship System.
Yasunari MatsuzakaShin TotokiKentaro HandaTetsuyoshi ShiotaKota KurosakiYoshihiro UesawaPublished in: International journal of molecular sciences (2021)
In silico approaches have been studied intensively to assess the toxicological risk of various chemical compounds as alternatives to traditional in vivo animal tests. Among these approaches, quantitative structure-activity relationship (QSAR) analysis has the advantages that it is able to construct models to predict the biological properties of chemicals based on structural information. Previously, we reported a deep learning (DL) algorithm-based QSAR approach called DeepSnap-DL for high-performance prediction modeling of the agonist and antagonist activity of key molecules in molecular initiating events in toxicological pathways using optimized hyperparameters. In the present study, to achieve high throughput in the DeepSnap-DL system-which consists of the preparation of three-dimensional molecular structures of chemical compounds, the generation of snapshot images from the three-dimensional chemical structures, DL, and statistical calculations-we propose an improved DeepSnap-DL approach. Using this improved system, we constructed 59 prediction models for the agonist and antagonist activity of key molecules in the Tox21 10K library. The results indicate that modeling of the agonist and antagonist activity with high prediction performance and high throughput can be achieved by optimizing suitable parameters in the improved DeepSnap-DL system.
Keyphrases
- structure activity relationship
- deep learning
- high throughput
- high resolution
- molecular docking
- convolutional neural network
- machine learning
- molecular dynamics
- artificial intelligence
- single molecule
- single cell
- healthcare
- oxidative stress
- molecular dynamics simulations
- mass spectrometry
- wastewater treatment
- data analysis