Foliar chlorophyll concentration modulates the degree of fungal exploitation in a rhizoctonia-associated orchid.
Kenji SuetsuguJun MatsubayashiPublished in: Journal of experimental botany (2022)
Some green orchids obtain carbon from both mycobionts and photosynthesis at the adult stage. Intriguingly, these orchids can produce albino and, in rare cases, variegated phenotypes. Here, we studied a Platanthera hondoensis population with green, variegated, and albino individuals. Although its closely related Platanthera species are usually associated with non-ectomycorrhizal rhizoctonias, and several studies have failed to find evidence of trophic plasticity in rhizoctonia-associated orchids, variegated and albino P. hondoensis must possess a higher fungal dependency than green P. hondoensis. Therefore, we investigated whether (i) P. hondoensis is associated with non-ectomycorrhizal rhizoctonias and (ii) the degree of mycoheterotrophy (using 13C abundance as a proxy) correlates with the foliar chlorophyll concentration. High-throughput DNA sequencing revealed that all P. hondoensis phenotypes were dominantly associated with a rhizoctonia from Ceratobasidiaceae belonging to a clade distinct from recognized ectomycorrhizal clades. Regression analysis revealed a positive linear relationship between foliar chlorophyll concentration and the degree of mycoheterotrophy. This study strongly suggests that rhizoctonia-associated P. hondoensis can dynamically adjust fungal exploitation in response to photosynthetic carbon levels. Since rhizoctonia is the most common orchid mycorrhizal partner, trophic plasticity may be a widespread adaptive trait in green orchids.