Login / Signup

Fluorescent Double-Stranded DNA-Templated Copper Nanoprobes for Rapid Diagnosis of Tuberculosis.

Tsung-Ting TsaiChung-An ChenNatalie Yi-Ju HoShuan YangChien-Fu Chen
Published in: ACS sensors (2019)
In this work, we investigate highly sensitive fluorescent Cu nanoparticles for use as rapid and specific nucleic acid amplification nanoprobes (NPs) for the diagnosis of tuberculosis. After applying polymerase chain reaction (PCR) to a tuberculosis (TB) sample, we demonstrate that the presence of the targeted IS6110 DNA sequence of TB can be easily and directly detected through the in situ formation of DNA-templated fluorescent Cu NPs and subsequently quantified using only a smartphone. Compared to traditional DNA analysis, this sensing platform does not require purification steps and eliminates the need for electrophoresis to confirm the PCR results. After optimization, this dsDNA-Cu NP-PCR method has the ability to analyze clinical TB nucleic acid samples at a detection limit of 5 fg/μL, and the fluorescent signal can be distinguished in only ∼3 min after the DNA has been amplified. Moreover, with the combination of smartphone-assisted imaging analysis, we can further reduce the instrument size/cost and enhance the portability. In this manner, we are able to eliminate the need for a fluorescent spectrophotometer to measure the clinical sample. These results demonstrate this platform's practical applicability, combining a smartphone and on-site analysis while retaining the detection performance, making it suitable for clinical DNA applications in resource-limited regions of the world.
Keyphrases