Improving the Sensitivity of Task-Based Multi-Echo Functional Magnetic Resonance Imaging via T 2 * Mapping Using Synthetic Data-Driven Deep Learning.
Yinghe ZhaoQinqin YangShiting QianJi-Yang DongShuhui CaiZhong ChenCongbo CaiPublished in: Brain sciences (2024)
(1) Background: Functional magnetic resonance imaging (fMRI) utilizing multi-echo gradient echo-planar imaging (ME-GE-EPI) has demonstrated higher sensitivity and stability compared to utilizing single-echo gradient echo-planar imaging (SE-GE-EPI). The direct derivation of T 2 * maps from fitting multi-echo data enables accurate recording of dynamic functional changes in the brain, exhibiting higher sensitivity than echo combination maps. However, the widely employed voxel-wise log-linear fitting is susceptible to inevitable noise accumulation during image acquisition. (2) Methods: This work introduced a synthetic data-driven deep learning (SD-DL) method to obtain T 2 * maps for multi-echo (ME) fMRI analysis. (3) Results: The experimental results showed the efficient enhancement of the temporal signal-to-noise ratio (tSNR), improved task-based blood oxygen level-dependent (BOLD) percentage signal change, and enhanced performance in multi-echo independent component analysis (MEICA) using the proposed method. (4) Conclusion: T 2 * maps derived from ME-fMRI data using the proposed SD-DL method exhibit enhanced BOLD sensitivity in comparison to T 2 * maps derived from the LLF method.
Keyphrases
- diffusion weighted imaging
- magnetic resonance
- contrast enhanced
- resting state
- magnetic resonance imaging
- diffusion weighted
- deep learning
- functional connectivity
- high resolution
- computed tomography
- machine learning
- artificial intelligence
- electronic health record
- big data
- mass spectrometry
- brain injury
- multiple sclerosis