Login / Signup

Connections and performances of Green's function methods for charged and neutral excitations.

Enzo MoninoPierre-François Loos
Published in: The Journal of chemical physics (2023)
In recent years, Green's function methods have garnered considerable interest due to their ability to target both charged and neutral excitations. Among them, the well-established GW approximation provides accurate ionization potentials and electron affinities and can be extended to neutral excitations using the Bethe-Salpeter equation (BSE) formalism. Here, we investigate the connections between various Green's function methods and evaluate their performance for charged and neutral excitations. Comparisons with other widely known second-order wave function methods are also reported. Additionally, we calculate the singlet-triplet gap of cycl[3,3,3]azine, a model molecular emitter for thermally activated delayed fluorescence, which has the particularity of having an inverted gap thanks to a substantial contribution from the double excitations. We demonstrate that, within the GW approximation, a second-order BSE kernel with dynamical correction is required to predict this distinctive characteristic.
Keyphrases
  • single molecule
  • high resolution
  • energy transfer
  • molecular dynamics