Bend-to-Break: Curvilinear Proton Transfer in Phenol-Ammonia Clusters.
Debopriya SadhukhanAnirban HazraG Naresh PatwariPublished in: The journal of physical chemistry. A (2020)
The electric field experienced by the OH group of phenol embedded in the cluster of ammonia molecules depends on the relative orientation of the ammonia molecules, and a critical field of 236 MV cm-1 is essential for the transfer of a proton from phenol to the surrounding ammonia cluster. However, exceptions to this rule were observed, which indicates that the projection of the solvent electric field over the O-H bond is not a definite descriptor of the proton transfer reaction. Therefore, a critical electric field is necessary, but it is not a sufficient condition for the proton abstraction. This, in combination with an adequate solvation of the acceptor ammonia molecule in a triple donor motif that energetically favors the proton transfer process, constitutes necessary and sufficient conditions for the spontaneous proton abstraction. The proton transfer process in phenol-(ammonia)n clusters is statistically favored to occur away from the plane of the phenyl ring and follows a curvilinear path which includes the O-H bond elongation and out-of-plane movement of the proton. Colloquially, this proton transfer can be referred to as a "bend-to-break" process.