Login / Signup

Organosilane-functionalized carbon quantum dots and their applications to "on-off-on" fluorometric determination of chromate and ascorbic acid, and in white light-emitting devices.

Yushan LiuWei LiPeng WuChunhui MaXueyun WuSha LuoShouxin Liu
Published in: Mikrochimica acta (2019)
Organosilane-functionalized carbon quantum dots (Si-CQDs) were synthesized by reacting glucosamine and 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane in acetone. The surface morphology, crystal structure, functional groups, elemental composition, and optical properties of the Si-CQDs were characterized using TEM (HRTEM), XRD, FT-IR, XPS, UV-vis absorption and fluorescence spectroscopy. They show that N-containing groups including C=N and C-N, and Si-containing groups including Si-O-C and Si-O-Si have been formed on the surface of Si-CQDs. The element doping and surface functionalization of Si-CQDs endow their novel chemical, physical and optical properties. The Si-CQDs dispersed in acetone are almost monodisperse with an average particle diameter of 3.6 nm. The Si-CQDs dispersed in acetone display blue fluorescence (excitation/emission maxima of 380/460 nm). In contrast, the solid-state Si-CQDs exhibited yellow fluorescence (with excitation/emission maxima of 470/595 nm). The fluorescence emission spectra of acetone-suspended Si-CQDs are concentration-dependent, and the emission peak becomes red-shifted as the concentration is increased. The Si-CQDs are sensitive and selective fluorescent "on off on" nanoprobes for chromate [Cr(VI)] and ascorbic acid (AA). Fluorescence is quenched by Cr(VI) via an inner filter effect from the absorption of Si-CQDs excitation at 380 nm by Cr(VI). Upon addition of AA, fluorescence is restored because of reduction of Cr(VI) by AA. Under optimal conditions (excitation/emission wavelength of 380/460 nm), the response is linear in the 0.4-160 μM Cr(VI) concentration range, and the detection limit is 34 nM. The respective data for AA are 1-80 μM and 84.6 nM. The practical use of the nanoprobe for Cr(VI) determination in real river water samples is also demonstrated successfully. Their concentration-dependent fluorescence, good thermal stability and self-crosslinking behavior also make the Si-CQDs a candidate material for white light-emitting diodes that displays color conversion and can act as an encapsulation layer in a blue light-emitting diode (LED) chip. Graphical abstract One-pot solvothermal synthesis of organosilane-functionalized carbon quantum dots (Si-CQDs) with blue fluorescence in solution, yellow fluorescence in solid state and concentration-dependent fluorescence property, and their applications for chromate (Cr(VI)) and ascorbic acid dual determinations and white light-emitting device. Graphical Abstract contains poor quality and small text inside the artwork. Please do not re-use the file that we have rejected or attempt to increase its resolution and re-save. It is originally poor, therefore, increasing the resolution will not solve the quality problem. We suggest that you provide us the original format. We prefer replacement figures containing vector/editable objects rather than embedded images. Preferred file formats are eps, ai, tiff and pdf.We have changed the poor quality graphical abstract into the jpg and pdf.
Keyphrases