Login / Signup

The Legionella pneumophila Effector RavY Contributes to a Replication-Permissive Vacuolar Environment during Infection.

Luying LiuCraig R Roy
Published in: Infection and immunity (2021)
Legionella pneumophila is the causative agent of Legionnaires' disease and is capable of replicating inside phagocytic cells, such as mammalian macrophages. The Dot/Icm type IV secretion system is a L. pneumophila virulence factor that is essential for successful intracellular replication. During infection, L. pneumophila builds a replication-permissive vacuole by recruiting multiple host molecules and hijacking host cellular signaling pathways, a process mediated by the coordinated functions of multiple Dot/Icm effector proteins. RavY is a predicted Dot/Icm effector protein found to be important for optimal L. pneumophila replication inside host cells. Here, we demonstrate that RavY is a Dot/Icm-translocated effector protein that is dispensable for axenic replication of L. pneumophila but critical for optimal intracellular replication of the bacteria. RavY is not required for avoidance of endosomal maturation, and RavY does not contribute to the recruitment of host molecules found on replication-permissive vacuoles, such as ubiquitin, RAB1a, and RTN4. Vacuoles containing L. pneumophila ravY mutants promote intracellular survival but limit replication. The replication defect of the L. pneumophila ravY mutant was complemented when the mutant was in the same vacuole as wild-type L. pneumophila. Thus, RavY is an effector that is essential for promoting intracellular replication of L. pneumophila once the specialized vacuole has been established.
Keyphrases
  • wild type
  • regulatory t cells
  • dendritic cells
  • induced apoptosis
  • escherichia coli
  • signaling pathway
  • pseudomonas aeruginosa
  • staphylococcus aureus
  • immune response
  • type iii
  • cell proliferation
  • quantum dots
  • pi k akt