Penicillin-binding protein redundancy in Bacillus subtilis enables growth during alkaline shock.
Stephanie L MitchellDaniel B KearnsErin E CarlsonPublished in: Applied and environmental microbiology (2023)
Microbes adapt to ever-changing environments and thrive over a vast range of conditions. While bacterial genomes are relatively small, significant portions encode for "redundant" functions. Apparent redundancy is especially pervasive in bacterial proteins that reside outside of the inner membrane. While conditions within the cytoplasm are carefully controlled, those of the periplasmic space are largely determined by the cell's exterior environment. As a result, proteins within this environmentally exposed region must be capable of functioning under a vast array of conditions, and/or there must be several similar proteins that have evolved to function under a variety of conditions. This study examines the activity of a class of enzymes that is essential in cell wall construction to determine if individual proteins might be adapted for activity under particular growth conditions. Our results indicate that a subset of these proteins are preferred for growth under alkaline conditions, while others are readily dispensable.