Login / Signup

Anchoring IrPdAu Nanoparticles on NH2-SBA-15 for Fast Hydrogen Production from Formic Acid at Room Temperature.

Yixing LuoQifeng YangWendan NieQilu YaoZhujun ZhangZhang-Hui Lu
Published in: ACS applied materials & interfaces (2020)
Hydrogen (H2), a regenerable and promising energy carrier, acts as an essential role in the construction of a sustainable energy system. Formic acid (HCOOH, FA), a natural biological metabolic products and also accessible through carbon dioxide (CO2) reduction, has a great potential to serve as a prospective H2 supplier for the fuel cell. Herein, ultrafine and electron-rich IrPdAu alloy nanoparticles with a size of 1.4 nm are highly dispersed on amine-modified mesoporous SiO2 (NH2-SBA-15) and used as a highly active and selective catalyst for fast H2 production from FA. The as-synthesized IrPdAu/NH2-SBA-15 possesses superior catalytic activity and 100% H2 selectivity with initial turnover frequency values of 6316 h-1 with the additive of sodium formate (SF) and 4737 h-1 even without SF at 298 K, comparable to the most effective heterogeneous catalysts ever published. The excellent performance of IrPdAu/NH2-SBA-15 was not only ascribed to the combination of the electronic synergistic effect of trimetallic alloys and the strong metal-support interaction effect but also attributed to the amine (-NH2) alkaline groups grafted on SBA-15, which is beneficial to boost the split of the O-H bond of FA.
Keyphrases