Cavitation dose painting for focused ultrasound-induced blood-brain barrier disruption.
Yaoheng YangXiaohui ZhangDezhuang YeRichard LaforestJeffrey WilliamsonYongjian LiuHong ChenPublished in: Scientific reports (2019)
Focused ultrasound combined with microbubble for blood-brain barrier disruption (FUS-BBBD) is a promising technique for noninvasive and localized brain drug delivery. This study demonstrates that passive cavitation imaging (PCI) is capable of predicting the location and concentration of nanoclusters delivered by FUS-BBBD. During FUS-BBBD treatment of mice, the acoustic emissions from FUS-activated microbubbles were passively detected by an ultrasound imaging system and processed offline using a frequency-domain PCI algorithm. After the FUS treatment, radiolabeled gold nanoclusters, 64Cu-AuNCs, were intravenously injected into the mice and imaged by positron emission tomography/computed tomography (PET/CT). The centers of the stable cavitation dose (SCD) maps obtained by PCI and the corresponding centers of the 64Cu-AuNCs concentration maps obtained by PET coincided within 0.3 ± 0.4 mm and 1.6 ± 1.1 mm in the transverse and axial directions of the FUS beam, respectively. The SCD maps were found to be linearly correlated with the 64Cu-AuNCs concentration maps on a pixel-by-pixel level. These findings suggest that SCD maps can spatially "paint" the delivered nanocluster concentration, a technique that we named as cavitation dose painting. This PCI-based cavitation dose painting technique in combination with FUS-BBBD opens new horizons in spatially targeted and modulated brain drug delivery.
Keyphrases
- blood brain barrier
- positron emission tomography
- pet ct
- computed tomography
- drug delivery
- cerebral ischemia
- percutaneous coronary intervention
- coronary artery disease
- acute coronary syndrome
- acute myocardial infarction
- antiplatelet therapy
- st segment elevation myocardial infarction
- cancer therapy
- st elevation myocardial infarction
- pet imaging
- magnetic resonance imaging
- coronary artery bypass grafting
- heart failure
- machine learning
- white matter
- high fat diet induced
- resting state
- metabolic syndrome
- adipose tissue
- functional connectivity
- magnetic resonance
- aqueous solution
- label free
- contrast enhanced
- drug induced
- subarachnoid hemorrhage
- quantum dots
- oxidative stress
- anaerobic digestion
- drug release
- diabetic rats