Login / Signup

The dihydroflavonol 4-reductase BoDFR1 drives anthocyanin accumulation in pink-leaved ornamental kale.

Xin FengYuting ZhangHuan WangZhendong TianSiyao XinPengfang Zhu
Published in: TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik (2020)
Overexpression and virus-induced gene silencing verified BoDFR1 conferred the anthocyanin accumulation in pink-leaved ornamental kale. Leaf color is an essential trait in the important horticultural biennial plant ornamental kale (Brassica oleracea var. acephala). The identity of the gene conferring this striking trait and its mode of inheritance are topics of debate. Based on an analysis of F1, F2, BC1P1, and BC1P2 ornamental kale populations derived from a cross between a pink-leaved P28 and white-leaved D10 line, we determined that the pink leaf trait is controlled by a semi-dominant gene. We cloned two genes potentially involved in anthocyanin biosynthesis in ornamental kale: Bo9g058630 and Bo6g100940. Based on their variation in sequence, we speculated that Bo9g058630, encoding the kale dihydroflavonol-4 reductase (BoDFR1) enzyme, plays a critical role in the development of the pink leaf trait. Indeed, an InDel marker specific for BoDFR1 completely co-segregated with the pink leaf trait in our F2 population. We then generated the 35Spro: DFR-GUS overexpression vector, which we transformed into D10. Overexpression of BoDFR1 indeed restored some anthocyanin accumulation in this white-leaved parental line. In addition, we targeted BoDFR1 in P28 using virus-induced gene silencing. Again, silencing of BoDFR1 resulted in a substantial decrease in anthocyanin accumulation. This work lays the foundation for further exploration of the mechanism underlying anthocyanin accumulation in pink-leaved ornamental kale.
Keyphrases
  • genome wide
  • dna methylation
  • cell proliferation
  • genome wide identification
  • copy number
  • transcription factor
  • mitochondrial dna
  • gene expression
  • oxidative stress
  • bioinformatics analysis
  • disease virus