Login / Signup

Analysis of the impacts of climate change, physiographic factors and land use/cover on the spatiotemporal variability of seasonal daily mean flows in southern Quebec (Canada).

Ali A Assani
Published in: Applied water science (2024)
The objective of this study is to compare the spatiotemporal variability of seasonal daily mean flows measured in 17 watersheds, grouped into three homogeneous hydroclimatic regions, during the period 1930-2023 in southern Quebec. With regard to spatial variability, unlike extreme daily flows, seasonal daily mean flows are very poorly correlated with physiographic factors and land use and land cover. In fall, they are not correlated with any physiographic or climatic factor. In winter, they are positively correlated with the rainfall and winter daily mean maximum temperatures. In spring, they are strongly correlated positively with the snowfall but negatively with the spring daily mean maximum temperatures. However, in summer, they are better correlated with forest area and, to a lesser extent, with the rainfall. As for their temporal variability, the application of six different statistical tests revealed a general increase in daily mean flows in winter due to early snowmelt and increased rainfall in fall. In summer, flows decreased significantly in the snowiest hydroclimatic region on the south shore due to the decrease in the snowfall. In spring, no significant change in flows was globally observed in the three hydroclimatic regions despite the decrease in the snowfall due to the increase in the rainfall. In fall, flows increased significantly south of 47°N on both shores due to the increase in the rainfall. This study demonstrates that, unlike extreme flows, the temporal variability of seasonal daily average flows is exclusively influenced by climatic variables in southern Quebec. Due to this influence, seasonal daily mean flows thus appear to be the best indicator for monitoring the impacts of changes in precipitation regimes and seasonal temperatures on river flows in southern Quebec.
Keyphrases
  • climate change
  • physical activity
  • single cell