Login / Signup

Low-Temperature Superplasticity of Ultrafine-Grained Aluminum Alloys: Recent Discoveries and Innovative Potential.

Elena V BobrukNail G ZaripovIlnar A RamazanovNguyen Quang ChinhRuslan Z Valiev
Published in: Materials (Basel, Switzerland) (2024)
The last two decades have witnessed significant progress in the development of severe plastic deformation techniques to produce ultrafine-grained materials with new and superior properties. This review examines works and achievements related to the low-temperature superplasticity of ultrafine-grained aluminum alloys. The examples are provided of the possibility to observe low-temperature superplasticity in aluminum alloys at temperatures less than 0.5 T melt and even at room temperature, and herein, we demonstrate the cases of achieving high ductility and high strength in aluminum alloys from processing utilizing severe plastic deformation. Special emphasis is placed on recent studies of the formation of segregations of alloying elements at grain boundaries in UFG Al alloys and their influence on the development of grain boundary sliding and manifestation of low-temperature superplasticity. In addition, the current status and innovative potential of low-temperature superplasticity in aluminum alloys are observed.
Keyphrases
  • room temperature
  • molecular dynamics
  • particulate matter
  • current status
  • oxide nanoparticles
  • early onset
  • drug induced
  • risk assessment