Login / Signup

Synthesis of biochar-CoFe 2 O 4 nanocomposite for adsorption of methylparaben from wastewater under full factorial experimental design.

Jemal FitoThabo T I Nkambule
Published in: Environmental monitoring and assessment (2022)
The presence of endocrine-disrupting chemicals in municipal wastewater has emerged as a threat to human health and the environment. Therefore, this study aimed to develop biochar-cobalt ferrite (BCF) nanocomposite for the removal of methylparaben from water under the full factorial experimental design of 4 factors with 3 levels (3 4 ). The biochar-CoFe 2 O 4 nanocomposite was developed by co-precipitation method from cobalt ferrite and biochar of Eucalyptus tree bark. Adsorbent surface morphology and functional and elemental composition were carried out by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and energy-dispersive X-ray spectroscopy (EDS) techniques which showed the presence of cracks with a rough surface, reasonable surface chemical composition, and many chemical functional groups, respectively. The experimental and predicted adsorption efficiencies ranged from 25.3 to 85.6% and 21.8 to 80.3%, respectively. The maximum adsorption performance (85.6%) reduced the methylparaben concentration from 27.5 to 4.0 mg/L at the optimum condition of adsorbent dose of 55 mg/100 mL, pH 6, contact time 90 min, and the initial methylparaben concentration of 27.5 mg/L. However, the adsorbent dose was the most influential main factor whereas the least influential was the interaction between solution pH and contact time under the regression model. The model also showed that 69% methylparaben removal was described by the regression model. The experimental data best fitted with the Freundlich model indicate multilayer adsorption which is the implication of physisorption. The sorption mechanism is attributed to Vander Waals forces, H-bonding, and dipole interaction. This BCF nanocomposite adsorbent appears to be promising for the removal of methylparaben from wastewater, but a further optimization process is essential to boost the treatment performance.
Keyphrases