Login / Signup

Slow Magnetic Relaxation in a Series of Mononuclear 8-Coordinate Fe(II) and Co(II) Complexes.

Xin-Xin JinXiao-Xiang ChenJing XiangYun-Zhou ChenLi-Hui JiaBing-Wu WangShun-Cheung ChengXin ZhouChi-Fai LeungSong Gao
Published in: Inorganic chemistry (2018)
A series of homoleptic mononuclear 8-coordinate FeII and CoII compounds, [FeII(L2)2](ClO4)2 (2), [FeII(L3)2](ClO4)2 (3), [FeII(L4)2](ClO4)2 (4), [CoII(L1)2](ClO4)2 (5), [CoII(L2)2](ClO4)2 (6), [CoII(L3)2](ClO4)2 (7), and [CoII(L4)2](ClO4)2 (8) (L1 and L2 are 2,9-dialkylcarboxylate-1,10-phenanthroline ligands; L3 and L4 are 6,6'-dialkylcarboxylate-2,2'-bipyridine ligands), have been obtained, and their crystal structures have been determined by X-ray crystallography. The metal center in all of these compounds has an oversaturated coordination number of 8, which is completed by two neutral homoleptic tetradentate ligands and is unconventional in 3d-metal compounds. These compounds are further characterized by electronic spectroscopy, cyclic voltammetry (CV), and magnetic measurements. CV measurements of these complexes in MeCN solution exhibit rich redox properties. Magnetic measurements on these compounds demonstrate that the observed single-ion magnetic (SIM) behavior in the previously reported [FeII(L1)2](ClO4)2 (1) is not a contingent case, since all of the 8-coordinate compounds 2-8 exhibit interesting slow magnetic relaxation under applied direct current fields.
Keyphrases
  • molecularly imprinted
  • single molecule
  • magnetic resonance imaging
  • peripheral blood
  • magnetic resonance
  • solid phase extraction
  • solid state
  • electron microscopy