Login / Signup

Flanking heterozygosity influences the relative probability of different base substitutions in humans.

William Amos
Published in: Royal Society open science (2019)
Understanding when, where and which mutations are mostly likely to occur impacts many areas of evolutionary biology, from genetic diseases to phylogenetic reconstruction. Africans and non-African humans differ in the mutability of different triplet base combinations. Africans and non-Africans also differ in mutation rate, possibly because heterozygosity is mutagenic, such that diversity lost when humans expanded out of Africa also lowered the mutation rate. I show that these phenomena are linked: as flanking heterozygosity increases, some triplets become progressively more mutable while others become less so. Africans and non-African show near-identical patterns of dependence on heterozygosity. Thus, the striking differences in triplet mutation frequency between Africans and non-Africans, at least in part, seem to be an emergent property, driven by the way changes in heterozygosity 'out of Africa' have differentially impacted the mutability of different triplets. As heterozygosity decreased, the mutation spectrum outside Africa became enriched for triplet mutations that are favoured by low heterozygosity while those favoured by high heterozygosity became relatively rarer.
Keyphrases
  • genome wide
  • gene expression
  • dna methylation
  • copy number