Oxidation-reduction imaging of myoglobin reveals two-phase oxidation in the reperfused myocardium.
Sally BadawiClémence LeboullengerMatthieu ChourroutYves GouriouAlexandre PaccaletBruno PillotLionel AugeulRadu BolbosAntonino BongiovaniNathan MewtonThomas BochatonMichel OvizeMeryem TardivelMazen KurdiEmmanuelle Canet-SoulasClaire Crola Da SilvaGabriel BidauxPublished in: Basic research in cardiology (2024)
Myocardial infarction (MI) is a serious acute cardiovascular syndrome that causes myocardial injury due to blood flow obstruction to a specific myocardial area. Under ischemic-reperfusion settings, a burst of reactive oxygen species is generated, leading to redox imbalance that could be attributed to several molecules, including myoglobin. Myoglobin is dynamic and exhibits various oxidation-reduction states that have been an early subject of attention in the food industry, specifically for meat consumers. However, rarely if ever have the myoglobin optical properties been used to measure the severity of MI. In the current study, we develop a novel imaging pipeline that integrates tissue clearing, confocal and light sheet fluorescence microscopy, combined with imaging analysis, and processing tools to investigate and characterize the oxidation-reduction states of myoglobin in the ischemic area of the cleared myocardium post-MI. Using spectral imaging, we have characterized the endogenous fluorescence of the myocardium and demonstrated that it is partly composed by fluorescence of myoglobin. Under ischemia-reperfusion experimental settings, we report that the infarcted myocardium spectral signature is similar to that of oxidized myoglobin signal that peaks 3 h post-reperfusion and decreases with cardioprotection. The infarct size assessed by oxidation-reduction imaging at 3 h post-reperfusion was correlated to the one estimated with late gadolinium enhancement MRI at 24 h post-reperfusion. In conclusion, this original work suggests that the redox state of myoglobin can be used as a promising imaging biomarker for characterizing and estimating the size of the MI during early phases of reperfusion.
Keyphrases
- high resolution
- cerebral ischemia
- acute myocardial infarction
- blood flow
- hydrogen peroxide
- reactive oxygen species
- optical coherence tomography
- acute ischemic stroke
- heart failure
- climate change
- brain injury
- mass spectrometry
- subarachnoid hemorrhage
- blood brain barrier
- high throughput
- fluorescence imaging
- photodynamic therapy
- single cell
- coronary artery disease
- high frequency
- high speed
- acute coronary syndrome
- case report
- data analysis