Login / Signup

Forming Homogeneous Three-Dimensional Structures from Discrete Silica Microspheres Using Sub/Supercritical Water.

Pavel KarásekJosef PlanetaMichal Roth
Published in: ACS applied materials & interfaces (2024)
A novel technique for producing highly uniform structures from silica microspheres has been developed and tested. It is based on exploiting the temperature- and pressure-dependent solvent properties of sub/supercritical water toward silicon dioxide. The initial concept aimed to create a "hybrid" capillary chromatographic column on the border between a packed and a monolithic column that would combine the benefits of both. The resultant method that integrates dissolution and coalescence in a continuous process enabled the production of a range of permeable columns with high efficiency and varying sizes. Their internal structures were examined using scanning electron microscopy and characterized using microHPLC chromatography. The structures produced using this method may have diverse applications beyond the scope of analytical chemistry. They prove useful in scenarios where high pressure is necessary because of the high hydraulic resistance of small particles and/or the passing medium with a high flow rate. A simple test of a bridged-microsphere monolithic column and a discrete microsphere-packed column, both after chemical modification to the C18 stationary phase, indicated superior performance of the new type of monolithic columns.
Keyphrases