Identification and characterization of MDR virulent Salmonella spp isolated from smallholder poultry production environment in Edo and Delta States, Nigeria.
Isoken H IgbinosaChukwunonso N AmoloAbeni BeshiruOlajide AkinnibosunAbraham G OgofureMaged El-AshkerMayada GwidaAnthony Ifeanyin OkohEtinosa O IgbinosaPublished in: PloS one (2023)
Salmonella is responsible for some foodborne disease cases worldwide. It is mainly transmitted to humans through foods of animal origin through the consumption of poultry products. The increased international trade and the ease of transboundary movement could propel outbreaks of local origin to translate into severe global threats. The present study aimed to characterize Salmonella serovars isolated from poultry farms in Edo and Delta States, Nigeria. A total of 150 samples (faecal, water and feed) were collected from ten poultry farms between January and August 2020 and analyzed for Salmonella characterization using standard bacteriological and molecular methods. Salmonella serovars identified include: Salmonella Enteritidis [n = 17 (39.5%)], Salmonella Typhimurium [n = 13 (30.2%)] and other Salmonella serovars [n = 13 (30.2%)]. All Salmonella serovars were cefotaxime and ampicillin resistant. The presence of the invA gene ranged from 9(69.2%) to 15(88.2%). The spvC gene ranged from 2(14.4%) to 10(58.8%). All Salmonella serovars had sdiA gene. The Salmonella isolates produced some extracellular virulence factors (such as protease, lipase, β-hemolytic activity, and gelatinase), while 13(30.2%) of the overall isolates formed strong biofilms. In conclusion, the detection of multiple antibiotic-resistant Salmonella serovars in faecal sources, which also exhibited virulence determinants, constituted a public health risk as these faecal samples have the potential as manure in the growing of crops. These pathogens can be transmitted to humans nearby and through poultry products, resulting in difficult-to-treat infections and economic loss.