Login / Signup

In-Operando Spatiotemporal Imaging of Coupled Film-Substrate Elastodynamics During an Insulator-to-Metal Transition.

Greg StoneYin ShiMatthew JerryVladimir StoicaHanjong PaikZhonghou CaiDarrell G SchlomRoman Engel-HerbertSuman DattaHaidan WenLong-Qing ChenVenkatraman Gopalan
Published in: Advanced materials (Deerfield Beach, Fla.) (2024)
The drive toward non-von Neumann device architectures has led to an intense focus on insulator-to-metal (IMT) and the converse metal-to-insulator (MIT) transitions. Studies of electric field-driven IMT in the prototypical VO 2 thin-film channel devices are largely focused on the electrical and elastic responses of the films, but the response of the corresponding TiO 2 substrate is often overlooked, since it is nominally expected to be electrically passive and elastically rigid. Here, in-operando spatiotemporal imaging of the coupled elastodynamics using X-ray diffraction microscopy of a VO 2 film channel device on TiO 2 substrate reveals two new surprises. First, the film channel bulges during the IMT, the opposite of the expected shrinking in the film undergoing IMT. Second, a microns thick proximal layer in the substrate also coherently bulges accompanying the IMT in the film, which is completely unexpected. Phase-field simulations of coupled IMT, oxygen vacancy electronic dynamics, and electronic carrier diffusion incorporating thermal and strain effects suggest that the observed elastodynamics can be explained by the known naturally occurring oxygen vacancies that rapidly ionize (and deionize) in concert with the IMT (MIT). Fast electrical-triggering of the IMT via ionizing defects and an active "IMT-like" substrate layer are critical aspects to consider in device applications.
Keyphrases
  • room temperature
  • high resolution
  • reduced graphene oxide
  • magnetic resonance imaging
  • low dose
  • quantum dots
  • high throughput
  • optical coherence tomography
  • magnetic resonance
  • single molecule
  • electron microscopy