Login / Signup

Optimizing assessment of low frequency H-reflex depression in persons with spinal cord injury.

Charles J CreechJasmine M HopeAnastasia ZarkouEdelle Carmen Field-Fote
Published in: PloS one (2024)
Considering the growing interest in clinical applications of neuromodulation, assessing effects of various modulatory approaches is increasingly important. Monosynaptic spinal reflexes undergo depression following repeated activation, offering a means to quantify neuromodulatory influences. Following spinal cord injury (SCI), changes in reflex modulation are associated with spasticity and impaired motor control. To assess disrupted reflex modulation, low-frequency depression (LFD) of Hoffman (H)-reflex excitability is examined, wherein the amplitudes of conditioned reflexes are compared to an unconditioned control reflex. Alternatively, some studies utilize paired-pulse depression (PPD) in place of the extended LFD train. While both protocols induce similar amounts of H-reflex depression in neurologically intact individuals, this may not be the case for persons with neuropathology. We compared the H-reflex depression elicited by PPD and by trains of 3-10 pulses to an 11-pulse LFD protocol in persons with incomplete SCI. The amount of depression produced by PPD was less than an 11-pulse train (mean difference = 0.137). When compared to the 11-pulse train, the 5-pulse train had a Pearson's correlation coefficient (R) of 0.905 and a coefficient of determination (R2) of 0.818. Therefore, a 5-pulse train for assessing LFD elicits modulation similar to the 11-pulse train and thus we recommend its use in lieu of longer trains.
Keyphrases
  • spinal cord injury
  • depressive symptoms
  • blood pressure
  • high speed
  • sleep quality
  • spinal cord
  • magnetic resonance imaging
  • mass spectrometry
  • magnetic resonance