Login / Signup

Immunoassay for serodiagnosis of Zika virus infection based on time-resolved Förster resonance energy transfer.

Lauri KareinenSatu HepojokiEili HuhtamoEssi M KorhonenJonas Schmidt-ChanasitKlaus HedmanJussi M HepojokiOlli Vapalahti
Published in: PloS one (2019)
Zika virus (ZIKV) is a mosquito-borne pathogen causing a febrile illness with arthralgia, conjunctivitis and rash. The complications include Guillain-Barré syndrome, congenital brain and other abnormalities and miscarriage. The serodiagnosis of ZIKV infection is hampered by cross-reactivity with other members of the Flavivirus family, notably dengue (DENV). This report describes a novel serological platform for the diagnosis of ZIKV infection. The approach utilizes time-resolved Förster resonance energy transfer (TR-FRET) elicited by two chromophore-labeled proteins (a ZIKV antigen and a super-antigen) simultaneously binding to a given antibody molecule. The antigen used in the assay is ZIKV non-structural protein 1 (NS1) and the super-antigen is bacterial protein L. Three assay variants were developed: the first measuring all anti-ZIKV-NS1 antibodies (LFRET), the second measuring IgM and IgA (acute-LFRET) and the third measuring IgG (immunity-LFRET). The assays were evaluated with a panel of samples from clinical ZIKV cases in travelers (n = 25) and seronegative (n = 24) samples. DENV (n = 38), yellow fever (n = 16) and tick-borne-encephalitis (n = 20) seropositive samples were examined for assessment of flavivirus cross-reactivity. The diagnostic sensitivities of the respective LFRET assays were 92%, 100% and 83%, and the diagnostic specificities 88%, 95% and 100% for LFRET, acute-LFRET and immunity-LFRET. Furthermore, we evaluated the assays against a widely-used commercial ELISA. In conclusion, the new FRET-based serological approaches based on NS1 protein are applicable to diagnosing zika virus infections in travelers and differentiating them from other flavivirus infections.
Keyphrases